
AVENTICS Series CCI Compact cylinders (ISO 21287)

The AVENTICS Series CCI (ISO 21287) cylinders stand for innovative, compact construction and an easy to clean design. The Series CCI (ISO 21287) is ideal for long strokes and increased requirements for optimized cycle times and moving masses. The sensors can be installed quickly and easily on all sides and over the entire cylinder lengths.

Technical data

Industrial
ISO 21287
40 mm
40 mm
G 1/8
Double-acting
Pneumatic pre-adjusted cushioning
Piston with magnet
Industry standard ATEX optional
Internal thread
M8
single
Standard Industry Scraper
6,3 bar
720 N
792 N
-20 °C
80 °C
1 bar
10 bar
2.02 J
0.303 kg
0.052 kg
12 4 4 C E F F II A II A S S 6 7 7 - 8 1 1 2 C

Compact cylinder ISO 21287, Series CCI

R481654410

series CCI
2023-11-23

Stroke max.	300 mm
Medium	Compressed air
Min. medium temperature	-20 °C
Max. medium temperature	3° 08
Max. particle size	50 µm
Min. oil content of compressed air	0 mg/m³
Max. oil content of compressed air	5 mg/m³

Material

Piston rod	Stainless Steel
Scraper material	Polyurethane
Seal material	Polyurethane
Material, front cover	Aluminum
Cylinder tube	Aluminum
End cover	Aluminum
Part No.	R481654410

Technical information

ATEX-certified cylinders with identification II 2G Ex h IIC T4 Gb / II 2D Ex h IIIC T135°C Db_X can be generated in the Internet configurator.

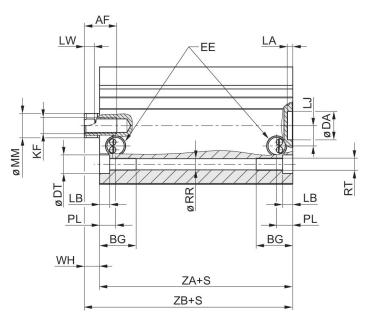
The operating temperature range for ATEX-certified cylinders is -20°C ... 60°C.

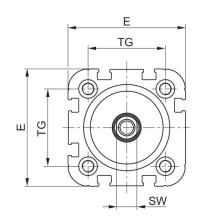
With cylinders with a piston rod extension, dimensions "WH" and "ZB" are increased by the value of the piston rod extension.

The pressure dew point must be at least 15 °C less than ambient and medium temperature and may not exceed 3 °C.

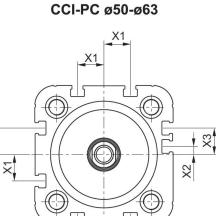
The oil content of compressed air must remain constant during the life cycle.

Use only the approved oils from AVENTICS. Further information can be found in the "Technical information" document (available in https://www.emerson.com/en-us/support).

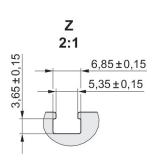



Compact cylinder ISO 21287, Series CCI

R481654410


series CCI 2023-11-23

Dimensions


CCI-PC ø20-ø40

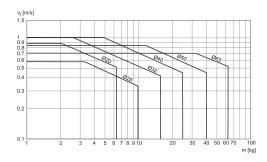
X1

_____ _____X1

×

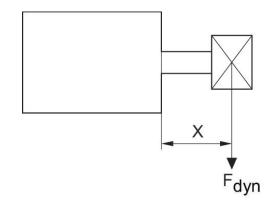
	- - X1
	<u>X1</u> Z
-1	
×	
l l	
↑	
Σ	
	X1
	X1

Piston Ø	AF	BG	DA H11	DT	E	EE	KF	LA	LB min.
20	12	15.5	12	7.5	36.3	M5	M6	2.5	4.5
25	12	15.5	12	8	40.3	M5	M6	2.5	4.5
32	12	17	14	8.6	50	G 1/8	M8	2.5	5
40	12	17	14	9.2	58	G 1/8	M8	2.5	5
50	16	17	18	11	68.3	G 1/8	M10	2.5	5
63	16	17	18	11	80	G 1/8	M10	2.5	5


Compact cylinder ISO 21287, Series CCI

R481654410

Piston Ø	LJ	LW	MM f8	PL	RR min.	RT 6H	SW	TG	WH
20	4.5	3.7	10	8	4.2	M5	8	22 ±0.4	5.6 ±1.4
25	4	3.7	10	8	4.2	M5	8	26 ±0.4	5.6 ±1.4
32	5	5	12	11	5.1	M6	10	32.5 ±0.5	7.5 ±1.6
40	10	5	12	7.9	5.1	M6	10	38 ±0.5	7.5 ±1.6
50	11.5	5.7	16	8	6.7	M8	13	46.5 ±0.6	8 ±1.6
63	15	5.7	16	8.2	6.7	M8	13	56.5 ±0.7	8 ±1.6

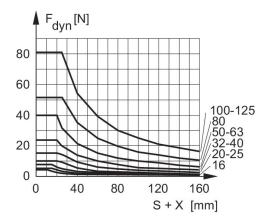

				74.04	70
Piston Ø	X1	X2	X3	ZA ±0,1	ZB
20	4.2	-	-	37.3	42.9 ±0.8
25	4.5	-	-	39	44.6 ±0.9
32	6.5	-	-	44	51.5 ±1
40	11	-	-	45	52.1 ±1
50	13	4	13	45.5	53.1 ±1
63	18	12	21	49	57 ±1

Cushioning diagram

 v_t = Piston velocity [m/s] m = Cushionable mass [kg]

Maximum admissible lateral force dynamic

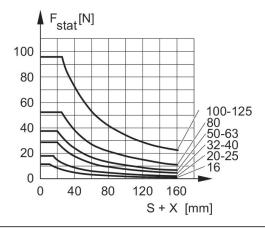
F dyn. = dynamic lateral force


X = distance between force application point and cylinder cover

S = stroke

R481654410

Maximum admissible lateral force dynamic

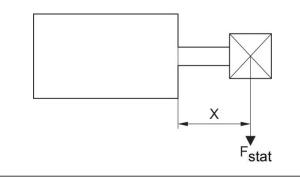


F dyn. = dynamic lateral force

X = distance between force application point and cylinder cover

S = stroke

Maximum admissible lateral force static

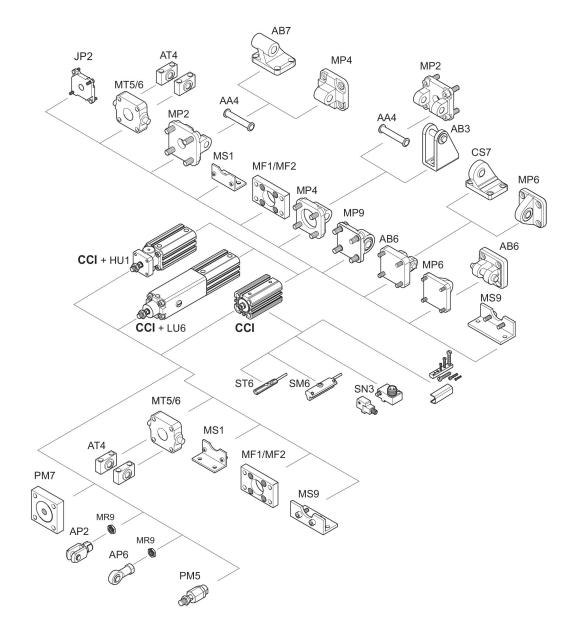


F stat. = static lateral force

X = distance between force application point and cylinder cover

S = stroke

Maximum admissible lateral force static


F stat. = static lateral force

X = distance between force application point and cylinder cover

R481654410

Overview drawing

NOTE: This overview drawing is only for orientation to indicate where the various accessory parts can be fastened to the cylinder. The illustration has been simplified for this purpose. It is thus not possible to derive the dimensions from this overview.

